REGULAR ELEMENTS DETERMINED BY GENERALIZED INVERSES

ADEL ALAHMADI, S. K. JAIN, AND ANDRÉ LEROY

ABSTRACT. In a semiprime ring, von Neumann regular elements are determined by their inner inverses. In particular, for elements a, b of a von Neumann regular ring R, a = b if and only if I(a) = I(b), where I(x) denotes the set of inner inverses of $x \in R$. We also prove that, in a semiprime ring, the same is true for reflexive inverses.

1. INTRODUCTION AND PRELIMINARIES

In this short note, R will stand for an associative ring with unity. An element $a \in R$ is (von Neumann) regular if there exists $x \in R$ such that a = axa. Such an element x is called an inner inverse (also called von Neumann inverse or generalized inverse) of a. The set of regular elements of a ring R is denoted by Reg(R). A ring R is regular if Reg(R) = R. Note that a regular ring is semiprime. In general, a regular element may have more than one inner inverse. We denote the set of inner inverses of a by I(a). An element $x \in R$ is called an outer inverse of a if xax = x. Note that if $x \in I(a)$ then xax is both an inner and an outer inverse of a. An element $x \in R$ is called a reflexive inverse of a if it is both an inner and an outer inverse of a. Denote the set of reflexive inverses of a by Ref(a). We first obtain a necessary and sufficient condition for $I(a) \subseteq I(b)$ (Lemma 6) and use this to prove that in a semiprime ring, for $a, b \in Reg(R), I(a) = I(b)$ if and only if a = b if and only if Ref(a) = Ref(b). (Theorem 7 and Theorem 10).

We begin with a few key lemmas.

The following is well-known (cf. [1] Corollary 1, Chapter 2. p. 40.)

Lemma 1. For $a \in R$ and $a_0 \in I(a)$, we have $I(a) = \{a_0 + t - a_0 a t a a_0 \mid t \in R\}$.

As usual, l(a) and r(a) denote respectively the left and right annihilator of an element $a \in R$. We define the inner annihilator of an element $a \in R$, as $\{x \in R \mid axa = 0\}$ and denote it by Iann(a).

The next Proposition gives a link between I(a) and Ref(a).

Proposition 2. For $a \in Reg(R)$, let $\varphi_a : I(a) \longrightarrow Ref(a)$ be such that $\varphi_a(x) = xax$. Then

- (1) The map φ_a is onto.
- (2) Ref(a) = I(a)aI(a).
- (3) If $x, y \in I(a)$ are such that $\varphi_a(x) = \varphi_a(y)$ then $x y \in l(a) \cap r(a)$.

1

(4) Let $x \in Ref(a)$, then $\varphi_a(x) = x$.

Proof. This is clear.

The next lemma is straightforward.

Lemma 3. Let $a \in Reg(R)$ and $a_0 \in I(a)$. Write $e = aa_0$, $f = a_0a$ and e' = 1-e, f' = 1 - f. Then

- (i) Iann(a) = l(a) + r(a) = Re' + f'R.
- (ii) $I(a) = a_0 + Iann(a) = a_0 + Re' + f'R$.
- (iii) If $a_0 \in Ref(a)$, then $Ref(a) = a_0 + fRe' + f'Re + f'RaRe'$.

Proof. We simply mention that the statement (iii) can be proved by using statement (2) of the above proposition 2. \Box

2. CHARACTERIZATION OF I(a) AND Ref(a)

We can now state our first result in the following proposition.

Proposition 4. Let R be a semiprime ring. If $a \in Reg(R)$, then for any $b \in R$, bI(a)b is a singleton set if and only if $b \in Ra \cap aR$.

Proof. Firstly, suppose that there exist $x, y \in R$ such that b = xa = ay and let $a_0 \in I(a)$. We then have that, for any $t \in R$, $b(a_0 + t - a_0ataa_0)b = (xaa_0 + xat - xataa_0)ay = xay + xatay - xatay = xay$. This shows that indeed bI(a)b is a singleton set.

Conversely, suppose that $bI(a)b = \{ba_0b\}$. We then have $b(a_0+t-a_0ataa_0)b = ba_0b$, for any $t \in R$. This implies that, for any $t \in R$, we have

$$b(t - a_0 a t a a_0)b = 0.$$

Substituting $(1-a_0a)t$ for t in this equality leads to $b(1-a_0a)tb = 0$, for any $t \in R$. The semiprimeness of R then implies that $b(1-a_0a) = 0$, i.e. $b = ba_0a \in Ra$. Similarly, substituting t by $t(1-aa_0)$ in the above equality gives $b = aa_0b$. In particular, $b \in aR$.

We recall the following result obtained by S.K. Jain and M. Prasad ([2]).

Lemma 5. Let R be a ring and let $b, d \in R$ such that b + d is a Von Neumann regular element. Then the following are equivalent:

- (1) $bR \oplus dR = (b+d)R$.
- (2) $Rb \oplus Rd = R(b+d)$.
- (3) $bR \cap dR = \{0\}$ and $Rb \cap Rd = \{0\}$.

The next proposition provides necessary and sufficient conditions as to when $I(a) \subseteq I(b)$, where $a, b \in Reg(R)$ and R is semiprime.

Proposition 6. Let R be a semiprime ring and let $a, b \in Reg(R)$. Then $I(a) \subseteq I(b)$ if and only if $bR \cap dR = 0$ and $Rb \cap Rd = 0$ where a = d + b.

Proof. Since $I(a) \subseteq I(b)$, we have bxb = b for every $x \in I(a)$. By Proposition 4, $b \in Ra \cap aR$. Write $b = \alpha a = a\beta$ for some $\alpha, \beta \in R$. Then bI(a)a = b. Next, bI(a)d = bI(a)a - bI(a)b = b - bI(a)b = 0. Consider now $dI(a)b = aI(a)b - bI(a)b = a\beta - bI(a)b = b - b = 0$. We thus have

$$bI(a)d = 0$$
 and $dI(a)b = 0$ (1)

Then, for any $x \in I(a)$, we have b+d = a = axa = (b+d)x(b+d) = bxa+dxb+dxd = b+0+dxd. This yields,

$$dI(a)d = d \tag{2}$$

Now, we proceed to show $dR \cap bR = 0$. Let $bx = dy \in bR \cap dR$. Multiplying both sides of the equality (2) by y on the right and using bx = dy we obtain dI(a)bx = dy. As proved above, we have dI(a)b = 0. and so dy = 0. This proves our assertion. Similarly, we show that $Rb \cap Rd = 0$. Let $xb = yd \in Rb \cap Rd$. Now, multiplying both sides of the equality (2) on the left by y, we get ydI(a)d = yd. This proves xbI(a)d = yd. Since bI(a)d = 0, we obtain yd = 0, proving $Rb \cap Rd = 0$. The converse is easy using the above lemma 5.

Next, we show, in particular, that the regular elements of a semiprime ring are equal if their sets of inner inverses are the same.

Theorem 7. Let R be a semiprime ring and $a, b \in Reg(R)$. Then I(a) = I(b) if and only if a = b.

Proof. We only need to prove the sufficiency. So assume that I(a) = I(b). Proposotion 6 implies that we can write a = b + d with $bR \cap dR = 0$, $Rd \cap Rb = 0$. Lemma 5 then gives that $(b+d)R = bR \oplus dR$. Since I(a) = I(b) we also have $aI(b)a = \{a\}$ and $bI(a)b = \{b\}$ and Proposition 4 implies that Ra = Rb and aR = bR. This leads to $aR = (b+d)R = bR \oplus dR = aR \oplus dR$. This forces d to be zero and hence a = b, as desired.

Alternatively we may invoke Hartwig's result (cf. [3]) in place of Lemma 5. This was pointed out to us by T.Y. Lam. Indeed, by our Proposition 4 we have aR = bR and Ra = Rb, and thus by invoking Hartwig's result, there exist units $u, v \in R$ such that b = au = va. If $x \in I(a) = I(b)$, then axa = a and bxb = b. The last equality implies that vaxau = au and hence va = a. Thus b = a.

Corollary 8. Let R be a regular ring. Then I(a) = I(b) if and only if a = b.

Remark 9. Pace Nielsen remarked that, in the above theorem, the semiprime hypothesis can be replaced by the assumption that a - b is regular. So assume I(a) = I(b), and $a - b \in Reg(R)$. As in our Proposition 4 we obtain

$$bt(1 - aa_0)b = 0, (1)$$

for any $t \in R$. If b_1 is a reflexive inverse of b, we obtain, for any t in R, $ataa_0b = (ab_1a)taa_0b = a(b_1bb_1)ataa_0b = ab_1(bb_1ataa_0b)$. Replace t by b_1at in (1) and obtain

$$ataa_0b = atb.$$
 (2)

For $z \in I(a - b)$ we have bzb = bza + azb - aza + a - b. Using this equality we compute

 $bzb = bzba_0b = (bza + azb - aza + a - b)a_0b = bzaa_0b + azb - azaa_0b + aa_0b - b.$

Using formulae (1) and (2) we get $aa_0b = b$ so that $bR \subseteq aR$. Symmetric arguments leads to aR = bR and Ra = Rb and Hartwig's theorem finishes the proof.

3. Reflexive inverses for semiprime rings

We conclude by characterizing the equality of Ref(a) = Ref(b), and obtain the analogue of Theorem 7 for reflexive inverses of semiprime rings.

Theorem 10. Let R be a semiprime ring such that $a, b \in Reg(R)$. Then Ref(a) = Ref(b) if and only if a = b.

Proof. Let $a_0 \in Ref(a) = Ref(b)$. Since a = 0 if and only if Ref(a) = 0, we may assume that a and b are not zero. Since bRef(a)b = bRef(b)b = b and Ref(a) = I(a)aI(a), we have that, for any t in R,

$$b(a_0 + t - a_0 a t a a_0)a(a_0 + t - a_0 a t a a_0)b = b$$
(1)

Replacing t by $(1 - a_0 a)t$ and noting that $a(1 - a_0 a) = 0$, we obtain successively $b(a_0a + (1 - a_0a)ta)(a_0 + (1 - a_0a)t)b = b$ and $b(a_0a + (1 - a_0a)ta)(a_0)b = b$ and so $ba_0b + b(1 - a_0a)taa_0b = b$. Since $ba_0b = b$ this gives $b(1 - a_0a)taa_0b = 0$ for all $t \in \mathbb{R}$. This leads to

$$aa_0b(1-a_0a)taa_0b(1-a_0a) = 0 \quad \forall t \in R.$$

The semiprimeness of R implies that $aa_0b(1 - a_0a) = 0$. Left multiplying by $a_0 \in ref(a)$, we get that $a_0b(1 - a_0a) = 0$ and hence since $a_0 \in I(b)$ we conclude that $b(1 - a_0a) = 0$. Therefore we obtain that $Rb \subseteq Ra$ and by symmetry $Ra \subseteq Rb$ and hence Ra = Rb. In the same way replacing t by $t(1 - aa_0)$ in (1), we obtain aR = bR. The Hartwig's Theorem then gives us that there exist invertible elements $u, v \in R$ such that a = bu and b = av. The argument at the end of the proof of the semiprime case (cf. Theorem 7) proves the theorem.

We now give an example of a ring, showing that without the semipriness hypothesis both of the above theorems are false.

Example 11. Consider the \mathbb{F}_2 -algebra

$$R = \mathbb{F}_2(a, b, x \mid axa = a, bxb = b, xax = x, xbx = x, a^2 = b^2 = ab = x^2 = 0)$$

This ring is finite and $\{a, b, x, ax, bx, xa, xb, axb, bxa\}$ is a basis of R as an \mathbb{F}_2 -vector space. It is easy to determine that $r(a) = r(b)\langle a, b, ax, bx, axb, bxa \rangle$, $l(a) = l(b) = \langle a, b, xa, xb, axb, bxa \rangle$ I(a) = x + R, I(b) = x + R, $ref(a) = \{x\} = ref(b)$. Of course, $(RaR)^2 = 0$, showing that R is not semiprime.

The next corollary is a direct consequence of Theorems 7 and 10.

Corollary 12. Let a, b be elements of a semiprime ring R. Then the following are equivalent:

- (1) I(a) = I(b),(2) a = b,
- (3) ref(a) = Ref(b).

Remark 13. We close with the following comment. The question of the equality of two elements in a regular ring that have the same set of inner inverses arose while the authors have been working on the question: if, for a regular self-injective ring R, I(c) = I(a) + I(b), $a, b, c \in R$, is it true that c is unique? If not, obtain a complete solution for c. We will discuss that in another paper which is in progress.

Acknowledgment

We thank the referee for his/her valuable comments including the remark that our proof of Theorem 10 for prime rings can be carried to semiprime rings as well.

References

- A. Ben-Israel and T.N.E. Greville, Generalized inverses: Theory and Applications, John Wiley and Sons New York (1974).
- [2] S.K. Jain and K.M. Prasad, Right-left symmetry of $aR \oplus bR = (a + b)R$ in regular rings, Journal of Pure and Applied Algebra **133** (1998) 141-142.
- [3] R.E. Hartwig, Generalized inverses, EP elements and associates, Revue Roumaine des Mathematiques Pures et Appliquees, (January 1978), 57-60.

Adel Alahmedi, Department of Mathematics, King Abdulaziz University, Jeddah, SA, Email:adelnife2@yahoo.com;, S. K. Jain, Department of Mathematics, King Andulaziz University Jeddah, SA, and, Ohio University, USA, Email:jain@ohio.edu, Andre Leroy, Faculté Jean Perrin, Université d'Artois, Lens, France, Email:andre.leroy@univ-artois.fr