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Abstract. In a semiprime ring, von Neumann regular elements are deter-

mined by their inner inverses. In particular, for elements a, b of a von Neu-

mann regular ring R, a = b if and only if I(a) = I(b), where I(x) denotes the
set of inner inverses of x ∈ R. We also prove that, in a semiprime ring, the

same is true for reflexive inverses.

1. Introduction and preliminaries

In this short note, R will stand for an associative ring with unity. An element
a ∈ R is (von Neumann) regular if there exists x ∈ R such that a = axa. Such an
element x is called an inner inverse (also called von Neumann inverse or generalized
inverse) of a. The set of regular elements of a ring R is denoted by Reg(R). A ring
R is regular if Reg(R) = R. Note that a regular ring is semiprime. In general, a
regular element may have more than one inner inverse. We denote the set of inner
inverses of a by I(a). An element x ∈ R is called an outer inverse of a if xax = x.
Note that if x ∈ I(a) then xax is both an inner and an outer inverse of a. An
element x ∈ R is called a reflexive inverse of a if it is both an inner and an outer
inverse of a. Denote the set of reflexive inverses of a by Ref(a). We first obtain a
necessary and sufficient condition for I(a) ⊆ I(b) (Lemma 6) and use this to prove
that in a semiprime ring, for a, b ∈ Reg(R), I(a) = I(b) if and only if a = b if and
only if Ref(a) = Ref(b). (Theorem 7 and Theorem 10 ).

We begin with a few key lemmas.
The following is well-known (cf. [1] Corollary 1, Chapter 2. p. 40.)

Lemma 1. For a ∈ R and a0 ∈ I(a), we have I(a) = {a0 + t− a0ataa0 | t ∈ R}.

As usual, l(a) and r(a) denote respectively the left and right annihilator of
an element a ∈ R. We define the inner annihilator of an element a ∈ R, as
{x ∈ R | axa = 0} and denote it by Iann(a).

The next Proposition gives a link between I(a) and Ref(a).

Proposition 2. For a ∈ Reg(R), let ϕa : I(a) −→ Ref(a) be such that ϕa(x) =
xax. Then

(1) The map ϕa is onto.
(2) Ref(a) = I(a)aI(a).
(3) If x, y ∈ I(a) are such that ϕa(x) = ϕa(y) then x− y ∈ l(a) ∩ r(a).
(4) Let x ∈ Ref(a), then ϕa(x) = x.

Proof. This is clear. �

The next lemma is straightforward.
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Lemma 3. Let a ∈ Reg(R) and a0 ∈ I(a). Write e = aa0, f = a0a and e′ = 1−e,
f ′ = 1− f . Then

(i) Iann(a) = l(a) + r(a) = Re′ + f ′R.
(ii) I(a) = a0 + Iann(a) = a0 +Re′ + f ′R.

(iii) If a0 ∈ Ref(a), then Ref(a) = a0 + fRe′ + f ′Re+ f ′RaRe′.

Proof. We simply mention that the statement (iii) can be proved by using statement
(2) of the above proposition 2. �

2. Characterization of I(a) and Ref(a)

We can now state our first result in the following proposition.

Proposition 4. Let R be a semiprime ring. If a ∈ Reg(R), then for any b ∈ R,
bI(a)b is a singleton set if and only if b ∈ Ra ∩ aR.

Proof. Firstly, suppose that there exist x, y ∈ R such that b = xa = ay and let
a0 ∈ I(a). We then have that, for any t ∈ R, b(a0 + t − a0ataa0)b = (xaa0 +
xat− xataa0)ay = xay + xatay − xatay = xay. This shows that indeed bI(a)b is a
singleton set.
Conversely, suppose that bI(a)b = {ba0b}. We then have b(a0+t−a0ataa0)b = ba0b,
for any t ∈ R. This implies that, for any t ∈ R, we have

b(t− a0ataa0)b = 0.

Substituting (1−a0a)t for t in this equality leads to b(1−a0a)tb = 0, for any t ∈ R.
The semiprimeness of R then implies that b(1 − a0a) = 0, i.e. b = ba0a ∈ Ra.
Similarly, substituting t by t(1 − aa0) in the above equality gives b = aa0b. In
particular, b ∈ aR. �

We recall the following result obtained by S.K. Jain and M. Prasad ([2]).

Lemma 5. Let R be a ring and let b, d ∈ R such that b + d is a Von Neumann
regular element. Then the following are equivalent:

(1) bR⊕ dR = (b+ d)R.
(2) Rb⊕Rd = R(b+ d).
(3) bR ∩ dR = {0} and Rb ∩Rd = {0}.

The next proposition provides necessary and sufficient conditions as to when
I(a) ⊆ I(b), where a, b ∈ Reg(R) and R is semiprime.

Proposition 6. Let R be a semiprime ring and let a, b ∈ Reg(R). Then I(a) ⊆ I(b)
if and only if bR ∩ dR = 0 and Rb ∩Rd = 0 where a = d+ b.

Proof. Since I(a) ⊆ I(b), we have bxb = b for every x ∈ I(a). By Proposition
4, b ∈ Ra ∩ aR. Write b = αa = aβ for some α, β ∈ R. Then bI(a)a = b. Next,
bI(a)d = bI(a)a−bI(a)b = b−bI(a)b = 0. Consider now dI(a)b = aI(a)b−bI(a)b =
aβ − bI(a)b = b− b = 0. We thus have

bI(a)d = 0 and dI(a)b = 0 (1)

Then, for any x ∈ I(a), we have b+d = a = axa = (b+d)x(b+d) = bxa+dxb+dxd =
b+ 0 + dxd. This yields,

dI(a)d = d (2)



REGULAR ELEMENTS DETERMINED BY GENERALIZED INVERSES 3

Now, we proceed to show dR ∩ bR = 0. Let bx = dy ∈ bR ∩ dR. Multiplying both
sides of the equality (2) by y on the right and using bx = dy we obtain dI(a)bx = dy.
As proved above, we have dI(a)b = 0. and so dy = 0. This proves our assertion.
Similarly, we show that Rb ∩ Rd = 0. Let xb = yd ∈ Rb ∩ Rd. Now, multiplying
both sides of the equality (2) on the left by y, we get ydI(a)d = yd. This proves
xbI(a)d = yd. Since bI(a)d = 0, we obtain yd = 0, proving Rb ∩Rd = 0.
The converse is easy using the above lemma 5. �

Next, we show, in particular, that the regular elements of a semiprime ring are
equal if their sets of inner inverses are the same.

Theorem 7. Let R be a semiprime ring and a, b ∈ Reg(R). Then I(a) = I(b) if
and only if a = b.

Proof. We only need to prove the sufficency. So assume that I(a) = I(b). Proposo-
tion 6 implies that we can write a = b+ d with bR∩ dR = 0, Rd∩Rb = 0. Lemma
5 then gives that (b+ d)R = bR⊕ dR. Since I(a) = I(b) we also have aI(b)a = {a}
and bI(a)b = {b} and Proposition 4 implies that Ra = Rb and aR = bR. This leads
to aR = (b+ d)R = bR⊕ dR = aR⊕ dR. This forces d to be zero and hence a = b,
as desired.

Alternatively we may invoke Hartwig’s result (cf. [3]) in place of Lemma 5. This
was pointed out to us by T.Y. Lam. Indeed, by our Proposition 4 we have aR = bR
and Ra = Rb, and thus by invoking Hartwig’s result, there exist units u, v ∈ R
such that b = au = va. If x ∈ I(a) = I(b), then axa = a and bxb = b. The last
equality implies that vaxau = au and hence va = a. Thus b = a. �

Corollary 8. Let R be a regular ring. Then I(a) = I(b) if and only if a = b.

Remark 9. Pace Nielsen remarked that, in the above theorem, the semiprime
hypothesis can be replaced by the assumption that a − b is regular. So assume
I(a) = I(b), and a− b ∈ Reg(R). As in our Proposition 4 we obtain

bt(1− aa0)b = 0, (1)

for any t ∈ R. If b1 is a reflexive inverse of b, we obtain, for any t in R, ataa0b =
(ab1a)taa0b = a(b1bb1)ataa0b = ab1(bb1ataa0b). Replace t by b1at in (1) and obtain

ataa0b = atb. (2)

For z ∈ I(a − b) we have bzb = bza + azb − aza + a − b. Using this equality we
compute

bzb = bzba0b = (bza+ azb− aza+ a− b)a0b = bzaa0b+ azb− azaa0b+ aa0b− b.

Using formulae (1) and (2) we get aa0b = b so that bR ⊆ aR. Symmetric arguments
leads to aR = bR and Ra = Rb and Hartwig’s theorem finishes the proof.
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3. Reflexive inverses for semiprime rings

We conclude by characterizing the equality of Ref(a) = Ref(b), and obtain the
analogue of Theorem 7 for reflexive inverses of semiprime rings.

Theorem 10. Let R be a semiprime ring such that a, b ∈ Reg(R). Then Ref(a) =
Ref(b) if and only if a = b.

Proof. Let a0 ∈ Ref(a) = Ref(b). Since a = 0 if and only if Ref(a) = 0, we
may assume that a and b are not zero. Since bRef(a)b = bRef(b)b = b and
Ref(a) = I(a)aI(a), we have that, for any t in R,

b(a0 + t− a0ataa0)a(a0 + t− a0ataa0)b = b (1)

Replacing t by (1 − a0a)t and noting that a(1 − a0a) = 0, we obtain successively
b(a0a + (1 − a0a)ta)(a0 + (1 − a0a)t)b = b and b(a0a + (1 − a0a)ta)(a0)b = b and
so ba0b+ b(1− a0a)taa0b = b. Since ba0b = b this gives b(1− a0a)taa0b = 0 for all
t ∈ R. This leads to

aa0b(1− a0a)taa0b(1− a0a) = 0 ∀t ∈ R.

The semiprimeness of R implies that aa0b(1 − a0a) = 0. Left multiplying by
a0 ∈ ref(a), we get that a0b(1 − a0a) = 0 and hence since a0 ∈ I(b) we conclude
that b(1−a0a) = 0. Therefore we obtain that Rb ⊆ Ra and by symmetry Ra ⊆ Rb
and hence Ra = Rb. In the same way replacing t by t(1 − aa0) in (1), we obtain
aR = bR. The Hartwig’s Theorem then gives us that there exist invertible elements
u, v ∈ R such that a = bu and b = av. The argument at the end of the proof of the
semiprime case (cf. Theorem 7) proves the theorem. �

We now give an example of a ring, showing that without the semipriness hy-
pothesis both of the above theorems are false.

Example 11. Consider the F2-algebra

R = F2〈a, b, x | axa = a, bxb = b, xax = x, xbx = x, a2 = b2 = ab = x2 = 0〉

This ring is finite and {a, b, x, ax, bx, xa, xb, axb, bxa} is a basis of R as an F2-vector
space. It is easy to determine that r(a) = r(b)〈a, b, ax, bx, axb, bxa〉, l(a) = l(b) =
〈a, b, xa, xb, axb, bxa〉 I(a) = x + R, I(b) = x + R , ref(a) = {x} = ref(b). Of
course, (RaR)2 = 0, showing that R is not semiprime.

The next corollary is a direct consequence of Theorems 7 and 10.

Corollary 12. Let a, b be elements of a semiprime ring R. Then the following are
equivalent:

(1) I(a) = I(b),
(2) a = b,
(3) ref(a) = Ref(b).

Remark 13. We close with the following comment. The question of the equality
of two elements in a regular ring that have the same set of inner inverses arose
while the authors have been working on the question: if, for a regular self-injective
ring R, I(c) = I(a) + I(b), a, b, c ∈ R, is it true that c is unique? If not, obtain a
complete solution for c. We will discuss that in another paper which is in progress.
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